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Low-Sampling-Rate Ultra-Wideband Channel
Estimation Using Equivalent-Time Sampling

Tarig Ballal and Tareq Y. Al-Naffouri, Member, IEEE

Abstract—In this paper, a low-sampling-rate scheme for
ultra-wideband channel estimation is proposed. The scheme
exploits multiple observations generated by transmitting multiple
pulses. In the proposed scheme, pulses are transmitted to
produce channel impulse response estimates at a desired sampling
rate, while the ADC samples at a rate that is times slower. To
avoid loss of fidelity, the number of sampling periods (based on the
desired rate) in the inter-pulse interval is restricted to be co-prime
with . This condition is affected when clock drift is present and
the transmitted pulse locations change. To handle this case, and to
achieve an overall good channel estimation performance, without
using prior information, we derive an improved estimator based
on the bounded data uncertainty (BDU) model. It is shown that this
estimator is related to the Bayesian linear minimum mean squared
error (LMMSE) estimator. Channel estimation performance of the
proposed sub-sampling scheme combined with the new estimator
is assessed in simulation. The results show that high reduction in
sampling rate can be achieved. The proposed estimator outper-
forms the least squares estimator in almost all cases, while in the
high SNR regime it also outperforms the LMMSE estimator. In
addition to channel estimation, a synchronization method is also
proposed that utilizes the same pulse sequence used for channel
estimation.

Index Terms—Ultra-wideband, UWB, channel estimation, sub-
sampling, ADC, linear minimum mean squared error, LMMSE,
bounded data uncertainty, BDU.

I. INTRODUCTION

C HANNEL estimation is an important process for ultra-
wideband (UWB) short-range communication and high

precision location and navigation systems [1], [2]. The main
challenge in the problem stems from the large bandwidth of
the transmitted pulses, which results in an extravagantly high
Nyquist sampling rate (equivalent to twice the bandwidth), thus
leading to formidable analogue-to-digital converter (ADC) re-
quirements [1]–[3]. Due to the same large bandwidth, a large
number of multipath echoes are resolvable [1]. As a result, an
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even higher (than Nyquist) rate might be required for resolving
these multipath components. For example, in [4], a sampling
rate in the range of 17.9–35.7 GHz was suggested in the context
of UWB channel estimation. Sampling at such a rate is practi-
cally limited by the cost and complexity of the required hard-
ware [1].
Techniques like compressed sensing are commonly applied to

reduce the ADC sampling rate required for signal reconstruction
and/or parameterhe estimation [5]. These techniques capitalize
on the sparsity of the data of interest. Due to the high density of
UWB multipath in most practical situations, these techniques
are not of much use in the UWB case. For example, according
to the IEEE 802.15.3a standard [6], the model (based on
line-of-sight channel measurements at 0–4 m) has a cluster ar-
rival rate of 0.0233 ns and ray arrival rate of 2.5 ns within
each cluster. Considering one of these clusters, we have a dura-
tion of approximately 43 ns in which we have, approximately,
107 distinct multipath components. To resolve all these compo-
nents, we need to sample at GHz,
in which case the sparsity rate is 1 (out of 1). For the channel
to be considered sufficiently sparse (e.g., has a sparsity rate of
0.1 or less) the channel has to be sampled at a sampling rate

GHz. This raises a conflict
between the sampling requirement for UWB signals in order to
make them sparse on the one hand, and the general interest in
reducing the cost of the sampling hardware on the other hand.
It can be said, therefore, that the use of compressed sensing will
not be efficient with UWB channels, at least as far as indoor en-
vironments are concerned.
Persistent efforts have been made to reduce the sampling re-

sources required for UWB channel estimation. For example,
in [2], a dictionary of parameterized waveforms (atoms) is de-
signed such that a sparse representation of the received signal
can be assumed. A compressed-sensing technique is applied to
reduce the sampling rate to 1/3 of the Nyquist rate. Although this
is a significant reduction in sampling rate, the required sampling
rate is still expensive for commercial applications. Improving
this technique is practically limited by the sparsity rates of the
UWB channels, as has been alluded to in the above discussion.
In [7], the channel estimation problem is translated into a har-

monic retrieval problem to achieve up to 1/8 sampling rate re-
duction. However, as is explained in [1], this method is blind
to circular shifts, and therefore, it cannot estimate timing off-
sets. Unlike [7], in [8], a separate timing estimator is combined
with the frequency-domain channel estimation method to offer
a more robust alternative. Unfortunately, the high sampling re-
quirements of the latter approach make the approach inefficient.
In [9], a bank of parallel analogue matched filters is used to

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



BALLAL AND AL-NAFFOURI: LOW-SAMPLING-RATE UWB CHANNEL ESTIMATION 4883

Fig. 1. Illustration of equivalent-time sampling.

allow for UWB signal sampling at the data symbol rate, which
is much lower rate than the Nyquist frequency. It is obvious that
the proposed configuration in [9] increases both cost and power
consumption.
In this paper, we draw on the idea of equivalent-time sam-

pling [10]–[12]. Equivalent-time sampling is a technique that
has been widely used in digital oscilloscopes to capture a repet-
itive signal using a sampling rate that is lower than the signal’s
Nyquist rate. An illustrative example of this scheme is depicted
in Fig. 1. In equivalent-time samplers, the ADC is triggered at
progressively increasing time intervals (in Fig. 1, the time in-
terval is increased by each time). Instead of acquiring samples
in rapid succession, the ADC digitizes only one point from sev-
eral occurrences of the input waveform and uses the samples to
recreate the shape of the signal. As a result, the acquisition is
not limited by the conversion rate of the ADC [11]. This equiv-
alent-time sampling scheme obviously adds more complexity to
the functionality of the ADC in addition to the stringent timing
requirement.
Unlike the equivalent-time sampling scheme used in digital

oscilloscopes, the scheme proposed herein does not require pro-
gressive sampling. In the proposed scheme, the repetitive signal
is sampled at uniform intervals. To pick the required signal sam-
ples from the different repetitions, we rely on the relationship
between the sampling rate and the inter-pulse interval, as will be
explained in the sequel. It will be shown that certain constraints
on the number of signal repetitions, the repetition time window
and the sub-sampling rate can be utilized to allow for perfect re-
construction of the repetitive signal in the noise-free case. This
enables us to use highly sub-sampled data to produce channel
impulse response (CIR) estimates sampled at the Nyquist rate
or higher.
This paper is organized as follows. Section II describes the

signal models. In Section III, the proposed equivalent-time ap-
proach is explained. In Section IV, the effect of errors due to
clock drift is considered andways formitigating it are discussed.
The actual channel estimation solution is given in Section V as-
suming perfect synchronization. In Section VI, the analytical
performance of the proposed channel estimation method is de-
rived. The synchronization problem is discussed in Section VII.
Simulation results are presented in Section VIII. The paper is
concluded in Section IX.

A. Notations

We use upper-case bold-face letters to denote matrices (e.g.,
) and lower-case bold-face letters to denote vectors (e.g., ).

A lower-case letter with a subscript denotes an element of a
vector (e.g., is the ’th element of the vector ). The notations

and are used to denote the Hermitian transpose and
the trace of a matrix, respectively. The operation denoted by

returns the vector that contains the diagonal elements
of a matrix argument; for a vector argument returns the
diagonal matrix whose diagonal entries are the vector elements.
The statistical expectation operation is denoted by and
the estimated value is denoted by . The symbol ‘- - ’ is
used to indicate that the expression to the right approximately
replaces the expression to the left. The real part, imaginary part
and magnitude of a complex number are denoted by, and

and , respectively, Finally, denotes the Euclidean
norm in the case of a vector, or the 2-induced norm in the case
of a matrix.

II. SIGNAL MODELS

A received UWB signal can be approximated as a linear com-
bination of scaled and delayed versions of the transmitted signal
[13], [14]. This leads to the well-known convolution relation-
ship, which, for discrete-time signal, is given by

(1)

where is the ’th sample of the transmitted signal, is
the corresponding received signal sample, is the CIR ’th
sample, and is a of sample noise that is assumed to be ad-
ditive white Gaussian noise (AWGN) with zero mean and vari-
ance . Here it is assumed that the signals are sampled at reg-
ular time intervals according to a sampling rate, . Note that
the model above ignores effects such as diffraction and disper-
sion, which result in frequency dependent distortions of the in-
dividual echoes [15].
Customarily, for time-limited signals, the process in (1) is

more conveniently expressed in the matrix form

(2)

where is the received signal vector, is
the CIR, is AWGN, and is referred
to herein as the transmission matrix, which has the following
structure:

...
...

...
. . .

...

(3)

In the abovemodel, it is assumed that any two adjacent elements
in a row or a column are separated by a sampling interval

.
In (2), the columns of the matrix are shifted versions of the

transmitted signal vector . The first column contains
the signal as it is. In the second column, the signal is shifted
(down) by one element. In the third column, an additional shift
by one element is introduced, and so on. Thus, the elements of
satisfy the property

, which makes a Toeplitz matrix.
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Fig. 2. The transmitted pulse train.

Fig. 3. Illustration of the structure of the transmission matrix . Each block
corresponds to a sub-matrix .

The transmitted signal consists of a priori known training
sequence that is transmitted periodically, possibly as part of a
data frame. Herein, we will ignore any transmitted data, and we
will simply refer to as the transmitted signal (in the channel es-
timation context). For the channel estimation method proposed
in this paper, the training sequence is comprised of pulses that
are transmitted sequentially at a regular time interval of sec-
onds. An example of such a pulse train is shown in Fig. 2. The
interval should be sufficiently large for the receiver to col-
lect all the multipath arrivals pertaining to a certain transmitted
pulse before the next transmission commences.
In this work, the transmission matrix for UWB channel

estimation is constructed as follows. The number of columns
of is equal to , which is chosen to coincide with the pulse
interval . Each column spans the duration of pulse intervals,
leading to a row dimension of for the matrix .
The concatenation of the first row of (starting from the last
element) and the first column (starting from the first element)
represents the samples of the transmitted signal missing the
first sample (see Fig. 3). Thus, can be obtained directly from
the vector .
To improve the transmission matrix structure, an auxil-

iary pulse is transmitted seconds prior to the onset of the
actual transmission. This extra pulse can be viewed as the
past data at the time point when the transmission of the ac-
tual pulse train starts (see Fig. 2). As a result of transmitting

this auxiliary pulse, the elements of the augmented trans-
mitted signal, , will become non-zero,
or more specifically, these elements will be equal to the
pulse samples . This choice gives a circu-
lant structure, i.e., the elements of now satisfy the property

; with
and taken modulo and , respectively. Fig. 3
depicts an example of a transmission matrix with circulant
structure. The figure shows that is comprised of identical
sub-matrix blocks. The benefit of the auxiliary pulse in giving
a circulfant structure to the matrix and its first sub-matrix
is clear. Note that if the contribution of the auxiliary pulse is
removed, the matrix becomes a non-circulant Toeplitz matrix
with one non-circulant sub-matrix at the top followed by
circulant sub-matrices. As a result of the structure of the matrix
, (2) can be written as

...
...

...
...

...

(4)

where ;
and . As explained above, is a circulant matrix
and it represents the transmission matrix when only one pulse
is transmitted (in addition to an auxiliary pulse). Now, it can
easily be seen that the model in (2) and (4) is a concatenation of
circulant systems of the form

(5)

Since the noise vectors have identical statistics, are statis-
tically equivalent. Note that originally is the channel order.
To get a unique solution in the single-pulse case with Nyquist
sampling, at least observations are required. Therefore, the
number of observations per pulse are chosen to be equal to ,
and hence the total number of observations (excluding the aux-
iliary pulse) is equal to .
Finally, we note that the circulant property of the matrix

and it sub-matrices is exploited in two ways:
a) By making circulant, all the sub-matrices of are iden-
tical, which is essential for the proposed equivalent-time
sampling method that will be presented in Section III.

b) The circulant property of the sub-matrix is exploited
for reducing the computational complexity of the channel
estimation solution and its robust version in the presence
of clock drift.

A. Down-Sampled Signal Model

The model in (2) and (4) represents a square sampling case,
where the sampling periods for the received signal and the CIR
are identical. In the UWB case, as well as in some other practical
situations, it is desirable to employ a cheaper ADC to sample
the received signal at a lower rate than that of . Assuming a
sampling period of , the received signal becomes

(6)
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where the subscript ‘ ’ indicates column down-sampling.
Throughout this paper, we assume integer decimation ratio. For
the channel estimation method presented in the next section, a
decimation ratio equal to (the number of pulses) is required.
Based on this decimation ratio, each column in (6) is obtained
by re-sampling the corresponding column in (2) according to
the new sampling rate . Note that each column of is
composed of a repetitive pattern of cycles that are exactly
identical. The sampling operation might pick some or all of
the elements of the repetitive pattern depending of the values
of and . The resulting matrix in (6) is of dimensions

(recall that is ). Also, the
observation vector size is reduced to since it is obtained
by down-sampling (of size ) times.

III. UWB CHANNEL ESTIMATION USING
EQUIVALENT-TIME SAMPLING

When the received signal is sampled below the Nyquist
rate, the individual pulses received from different paths will be
under-represented according to the Nyquist sampling criterion.
This leads to a loss of fidelity, that is, no longer contains suf-
ficient information to accurately estimate the CIR. In fact, for
an extremely sub-sampled signal, some multipath components
may be completely missed during the sampling process. For ex-
ample, if the sampling interval is larger than the
pulse width, some multipath components will not be sampled
even at a single time point, and hence cannot be recovered. To
handel such challenging situations, an equivalent-time sampling
approach is developed in this section.
To describe the proposed method for low-sampling rate

channel estimation, consider the under-sampled system in (6)
and the square-sampled system in (4). Without loss of gener-
ality, let us focus on the case where the higher sampling rate
(the sampling rate required for the CIR) is the Nyquist rate.
Assume that the received signal is sub-sampled by a factor .
Theorem 1: Given a number of blocks , for the two systems

in (5) and (6) to be equivalent, a sufficient condition is that the
two numbers and be co-prime.

Proof: Consider any column (vector) of the system in (4).
Denote that column by . By down-sampling by a factor , we
obtain the corresponding column in (6), which is denoted by .
First, we want to prove that for co-prime and , the elements
of are exactly the same as the elements of the corresponding
column in (5), call it , taken in different order (or permutation).
The indices of the elements of that are picked by the sam-

pling process to form are

(7)

The actual value at each index, , is equal to the value of at
an index that is given by the mapping

(8)

where denotes the modulo-N operation.
Now, let us focus on two elements with indices

and , whose mappings are

and , respectively. For
these mappings the following relationships hold

(9)

(10)

where are the corresponding
quotients. By subtracting (10) from (9), we obtain

(11)

where

and . It can easily be seen
that is another sampling index, the mapping of which is .
Now, let us write and ; where

and are non-zero integers; and are co-prime. With this
factorization, (11) yields

(12)

From (12), it can be seen that if and only if
and . Now, consider the case in which and are
co-prime, i.e., and . In this case, since

and , then it is
guaranteed that and . Consequently,

(13)

From (13), it follows that for co-prime and , the operation
in (8) is a one-to-one mapping. Hence,

(14)

where is a permutation of the vector elements. From
(14), we conclude that the system in (6) is identical to that in (5);
the only difference is a row-wise permutation1, which is ends of
the proof of Theorem 1.
The implication of Theorem 1 is that we can utilize repetitions

of the same data block for signal/paramter estimation while re-
laxing the sampling requirements. Specifically, the deficiency
in sampling rate can be perfectly compensated for by exploiting
extra blocks under the constraints suggested above.

IV. PRACTICAL CONSIDERATIONS

In this section, practical effects are taken into account when
applying the equivalent-time sampling method described in
the previous section to the UWB channel estimation problem.
Based on the conclusion of Section III, we can transmit a pulse
train of pulses to obtain identical blocks of received
signal that can be sampled at a rate of without loss of
fidelity. Note that the extra pulse is required to make the system
circulant.
Implicit in the above development are two assumptions:
a) The channel remains static throughout the measurement
period (see (4)); and

b) there are no errors in transmission times.

1Row-wise permutations, applied to a linear system, do not affect the solution
of that system.
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For the first condition to be satisfied, the pulse train duration
should be sufficiently small such that the channel variation from
pulse interval to another is negligible. Throughout this paper, it
will be assumed that the pulse train complies with this require-
ment. This condition can be easily satisfied in indoor environ-
ments since object movement speeds are sufficiently low (a few
meters per second at most, while in Section VIII, we will see
that the whole transmission interval is in the range of a few mi-
croseconds). In other words, the maximum achievable reduction
in sampling rate is limited by how fast the environment changes.
The second condition is related to time synchronization;

namely, the effect of time shifts in the transmitted pulse loca-
tions. The effect of mis-synchronized transmitted pulses is that
the received blocks are not identical. One of the main causes
of mis-synchronization is clock drift. Normally, clock drift is
parameterized by the so-called clock drift rate that is given in
parts per million (p.p.m.) [16], [17]. For a given drift rate , the
total drift at time seconds is given by

(15)

where is in microseconds if is in p.p.m.
Considering the models in (4) and (6), the direct result of

clock drift is to create a mismatch between the received signals
and their respective transmission matrices. In each case, the re-
ceived signal is generated from a different transmission matrix,
which is constructed from a transmission sequence where the
pulse locations are shifted according to the drift rate. Let us as-
sume that the auxiliary pulse transmission starts at a certain time
instant. The next pulse (or the first pulse) will be shifted for-
ward or backward depending on whether the drift is positive or
negative. The same will happen to the following pulses, with in-
creasing or decreasing shift levels. Fig. 4 depicts an example of
a transmitted pulse train with positive clock drift effect. If the
drift is reasonably small compared to the pulse width and the
sampling rate, we can assume that the matrix that has actually
produced the received signal is equal to the ideal transmission
matrix plus an error matrix . Hence, the model in (6) is
replaced by

(16)

where represents the contribution of the clock drift to the
observation error. Note that the frequency distortion effect that
has been alluded to above, can well be absorbed into the matrix

. However, for the sake of simplicity, we will consider clock
drift as the sole contributor to the uncertainty represented by the
matrix .
Note that the ADC clock drift at the receiver can cause a sim-

ilar effect to that caused by the transmitter’s clock drift. For
simplicity, we will ignore the effect of clock drif/jitter at the re-
ceiver. That effect can be modeled in a similar way to the trans-
mitter’s clock drift effect and it can also be absorbed into the
error matrix . The error matrix can be conceived as the
difference between the two transmission matrices constructed
from two different (drifted and non-drifted) pulse trains under a
certain sampling rate. For a moderate drift rate, the support of

will concentrate around the support locations of the matrix

Fig. 4. An example of a transmitted pulse train with positive clock drift ef-
fect (continuous lines). The dotted lines represent the original sequence without
clock drift effect.

. The model in (16) is the practical model that will be con-
sidered in the following developments.
In addition to the above two assumptions, it will also be as-

sumed that the receiver has perfect knowledge of the time in-
stant of the first arrival of the first pulse in the pulse train. Ac-
quiring such synchronization information will be discussed in
Section VII.

V. CHANNEL ESTIMATION

Using the signal models (6) and (16), let us see how we can
perform channel estimation. For the model in (6), i.e., when

, the least squares (LS) estimator for the CIR is given
by [18]

(17)

For , (17) is expected to diverge depending on the drift
rate. Note that for the AWGN case, (17) is also the best linear
unbiased estimator (BLUE) [18].
Estimators that exploit the underlying model of the data are

well-known to be more robust to different types of perturba-
tions. These estimators include Bayesian estimators such as
the linear minimum mean squared error (LMMSE) estimator,
which, for zero-mean CIR and AWGN, is given by [18]

(18)

where is the CIR covariance matrix. Note
that the LMMSE approach assumes a stochastic CIR model
contrary to the LS method that assumes a deterministic one.
In reality, CIR models are stochastic, which gives a clear ad-
vantage to the LMMSE over the LS estimator. However, in
practice, the channel model cannot be precisely known, and
consequently the required statistics (i.e., and ) are not
available in most practical cases. A less strict version of the
estimator in (19) can be obtained by assuming the CIR to be
white (i.e., - - ), which results in the white LMMSE
(WLMMSE) estimator:

(19)

To deal with themodel uncertainties (also known as error-in-
variables) in linear systems, when no statistical information is
available, a number of formalisms have been suggested. These
include total least squares (TLS) based methods [19], [20],
methods [21], and bounded data uncertainty (BDU) methods



BALLAL AND AL-NAFFOURI: LOW-SAMPLING-RATE UWB CHANNEL ESTIMATION 4887

[22]. The methods are unsuitable since they are derived for
state-space models. In general, TLS is a good match for solving
the problem in (16); however, the approach is reported to over-
estimate the uncertainty at times, thus leading to erroneous so-
lutions. Such conservative behavior is avoided in the BDU ap-
proach since a bound on the uncertainty is imposed [22]. Be-
cause of this latter property, the BDU approach will be pursued
in this paper. The formalism is also found to be well suited for
the scenario under consideration and can be applied in a compu-
tationally efficient manner, as will be demonstrated in this sec-
tion.
Based on [22], the CIR estimation problem in (16) can be for-

mulated as a min-max problem. Namely, the solution is obtained
by solving

(20)

where is the upper bound on the 2-induced norm of and
is assumed to be known, and is the upper bound on the Eu-
clidian norm of and will turn out to be irrelevant to the solu-
tion of (20). It can be proved that the min-max problem in (20)
is equivalent to the minimization problem [22]

(21)

whose solution takes the form [22]

(22)

Here is a regularization parameter that is obtained by solving
the secular equation [22]

(23)

where , with being the vector of the singular
values of ; and is the matrix of eigenvectors of

.
It is shown in [22] that for (22) to be the unique solution of

(21), has to satisfy the inequality

(24)

Note that for , the solution in (22) coincides with the LS
solution of (17).
In order to find the CIR estimator given in (22), a number of

computations need to be performed. The following subsections
will discuss how to carry out each of these computations in an
efficient manner.

A. Computing the Singular Values

In a practical UWB system the matrix is large and finding
the singular values can be computationally demanding. To deal
with this issue, we exploit the equivalence of the matrices

and , and the circulant property of the latter matrix. Namely,
we have

(25)

The matrix is a circulant matrix, and hence, its eigenvalues
can be computed using the fast Fourier transform (FFT) of its
first row, [23]. From the relationship between the singular
values of and the eigenvalues of , we obtain

(26)

Note that the eigenvalue above can be pre-computed using any
suitable method and stored to be used for computing the solution
in (22).

B. Finding

To find , (23) is iteratively solved. Since (23) is differen-
tiable, the Newton’s method [24] is one of the good options to
carry out the task. Using the Newton’s method, the iterations for
finding , starting from an initial guess, , are given by

(27)

The iterations in (27) reach convergence when
, where is a sufficiently small value. For (27) to

converge to the only positive root, a judicious choice of the ini-
tial value is needed. Throughout this work, the initial value

is used. When tested in simulation, this initialization
led to convergence after few iterations in more that 99% of the
cases. Due to the involvement of mostly diagonal matrices, (27)
can be evaluated with moderate computational cost.

C. Computing the Inverse

We can calculate the inverse that appears in
the BDU solution (22) by again exploiting the circulant prop-
erty of , which allows us to diagonalize it using the FFT
matrix as

(28)

where . Hence, we can write

(29)

This equation shows that the process of CIR estimation under
the BDU model can be carried out without demanding much
computational load. Note that while thematrix inverses required
for evaluating the LS, LMMSE and WLMMSE solutions can
all be pre-computed, the BDU solution requires re-computing
the matrix inverse for each new observation
vector ( is data dependent). To reduce the computational com-
plexity involved, we capitalize on the circulant property of the
data model. The solution of a circulant system can be imple-
mented with a complexity of compared to
for a Toeplitz system [23], which is a significant difference in
computational complexity for a large value of .
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Themethod for CIR estimation with BDU can be summarized
as follows:
1) Compute , and then using (26).
2) Find using the iterations in (27).
3) Compute based on (22) and (29) using the following
steps:

3.1 Multiply by the matrix .
3.2 Apply the FFT on the results.
3.3 Divide (element-wise) by .
3.4 Finally, obtain by applying the inverse FFT.

VI. ANALYTICAL PERFORMANCE

In the preceding section, we derived the BDU estimator of
the CIR. This estimator minimizes the cost function in (21)
(for a certain value of the ), which corresponds to solving the
min-max problem (20). In most estimation problems, we are in-
terested in minimizing the mean squared error (MSE), which
is a different process that may not coincide with minimizing the
maximum error as in (20). To get some insight into theMSE per-
formance of the BDU solution, we conduct the following anal-
ysis. Starting from (22), the MSE is defined as

(30)

where is the true CIR and, for simplicity, is used instead
of . If we substitute for from (22) and manipulate we
get the expression of the MSE in terms of the various system
parameters. This derivation is detailed in AppendixA. The exact
expression for the MSE can be simplified further by assuming
that the CIR is white. This leads to the following expression of
the MSE:

(31)

To obtain an even simpler expression, we introduce several ap-
proximation (see Appendix A) to obtain the approximate MSE
as

(32)

where is a vector whose elements are the eigenvalues of
, and is approximated as:

(33)

and is obtained from (27) by averaging over and per-
forming the iterations in a similar manner to (27). After manip-
ulations, we obtain the following iterations:

(34)

where

- -

(35)

The complete derivation of (31)–(34) is detailed in Appendix A.
Now, contemplating theMSE in (32), we observe the following:
a) The MSE is composed of two main terms; the first term is
the contribution of noise; and the second term is a function
of the channel variance and drift.

b) Contrary to the first term, the second term is a bias term
that does not asymptotically go to zero as the noise vari-
ance goes to zero.

c) In the special case where (i.e., in the LS case) and
(i.e., no clock drif), equals , which

is the performance of the LS estimator [18].
d) The benefit of the regularization parameter in reducing
the noise effect is clear. It also reduces the contribution of
the imaginary parameter of the drift. However, the way
the it is involved with the real parameter of the drift sug-
gests that the regularization parameter, depending on its
value, may produce a counter effect.

A. Selecting

First, recall that represents the upper limit on the trans-
mitted data uncertainty as prescribed in (20). Being an upper
limit means that there are infinitely many candidate values of
that can be used. As the interest is customarily in the MSE per-
formance, we can choose a value of that minimizes the MSE
of the BDU estimator. This value can be obtained by differen-
tiating the MSE expression, equating to zero and solving for .
The optimal value of can then be obtained by substituting in
(23) and solving for . This is a straightforward procedure, but
unfortunately, the first derivative of the MSE expression (given
in (31) or (32)) leads to an intractable order- nonlinear equa-
tion in . To obtain a sub-optimal value of , we optimize the
MSE performance under zero clock-drift conditions. By substi-
tuting in (32), differentiating and setting the derivative
equal to zero, we obtain

(36)

By substituting (36) in (23) and solving for , we obtain

(37)
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From (36) and (37), it be can clearly seen that in the case where
, the BDU estimator coincides with the WLMMSE

estimator. In other words, by choosing according to (37), the
BDUmethod performs exactly like aWLMMSE estimator. This
result underscores the importance of exploiting the underlying
model in providing robustness against uncertainties. However,
this requires a priori knowledge that may not be available in
practical situations. For example, in indoor environments, the
statistical parameters of can be time variant due to the move-
ment of objects. Therefore, the value of the parameter is very
difficult to estimate accurately in most realistic scenarios. To
circumvent this hurdle, we resort to approximating with its
value at infinite SNR, i.e., when . This gives the value,

(38)

which we use to obtain the final results presented in this paper.
Note that is determined only by the transmission matrix and
can, therefore, be calculated a priori. The rationale behind (38)
is as follows:
1) Since we do not know the drift rate and the SNR, it is a
good idea to optimize for the zero-noise zero-drift case.

2) It can be shown that increases with the increase in both
noise and drift. However, the increase in is insignificant
since theMSE becomes flatter when noise or drift increase,
as will be shown in Section VIII. Therefore, calculating
under zero-noise zero-drift conditions can be considered as
a sub-optimal, yet reasonable, choice.

VII. SYNCHRONIZATION

So far we have presented a low-sampling-rate solution to the
UWB channel estimation problem. In the proceeding develop-
ments, we assumed perfect synchronization; that the receiver
knows exactly the start of the received signal portion due to the
transmitted pulses. In practice, however, some means of time

acquisition and synchronization is required to gain such knowl-
edge. The UWB synchronization problem has been discussed
in a number of publications (see [1] and the references therein).
Usually, a known sequence of modulated pulses is transmitted
for this purpose. In this paper, we suggest utilizing the same
channel estimation pulse sequence to achieve synchronization.
We propose a simple synchronization method based on cross
correlation.
In the proposed channel estimation scheme, the UWB re-

ceiver needs to acquire a data window of samples that starts
exactly at the first multipath arrival pertaining to the first pulse.
To achieve this, we need to estimate the first arrival time of
the first pulse. Alternatively, we can detect the first arrival be-
longing to the auxiliary pulse and then calculate the first arrival
time of the first pulse accordingly. The latter option is found
more appealing; since a correlation based approach is used, it
is helpful to incorporate the received data from all the pulses,
including the auxiliary pulse, in the synchronization process.
Now, let us consider a received data window that starts

exactly at the first arrival of the auxiliary pulse and that include
all the arrivals attributed to the other pulses. The length of
this window is , where is the closest

Fig. 5. Proposed data frame format.

integer to . Similar to (6), this data window is related to the
transmitted pulse sequence by the relationship

(39)

where is an augmented sub-sampled transmis-
sion matrix. This matrix is obtained by down-sampling the ma-
trix , where is obtained from by re-
moving the contribution of the auxiliary pulse (see Fig. 3). This
makes the matrix a non-circulant matrix since the auxiliary
pulse is not proceeded by any pulse transmission.
To detect the arrival of the pulse group (including the auxil-

iary pulse), we pick a test window of length . We define
the correlation of this window as

(40)

which represents the correlations of the transmitted pulse se-
quence (of pulses) with at all possible lags. For
to be useful in detecting the start of the pulse sequence, the
window containing all the pulse sequence contributions
has to produce higher correlation than any other window. This
can be assured by proper design of the data transmission, for ex-
ample, by using orthogonal codes, etc. To simplify the presenta-
tion of the proposed synchronization method, we pick a simple
example where pulse position modulation (PPM) is used. We
apply the proposed method to estimate the first time of arrival
pertaining to the auxiliary pulse. To have good correlation prop-
erties, we suggest using a symbol rate that is lower than the syn-
chronization pulse transmission rate. This makes any window
that contains only data symbols produce less correlation values
compared to a window that fully or partially contains synchro-
nization/channel estimation pulse sequence. To provide more
robustness, a guard interval with no transmission can be used be-
fore and after the synchronization pulse sequence. For example,
the data frame format depicted in Fig. 5 can be used.
Based on the data frame format in Fig. 5, the proposed

synchronization method looks for the synchronization point
by searching over samples of data that correspond to one
frame duration. We start by picking the first window of

samples. We calculate using (40). Next, the window is
slid right by one sample and the new correlation is calculated.
The process is repeated until the last element of the sample
vector is reached. For each window we also calculate the norm
of the correlation . This scalar quantity increases as the
test window passes through the synchronization sequence until
a peak is reached. Then the value of starts to drop as the
test window passes away from the synchronization sequence
(see Fig. 11). The point before which starts to drop
significantly is the start of the auxiliary pulse arrivals. To detect
this point, first we calculate the normalized version of ,

(41)
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where is the total number of windows. Note that the max-
imum value of is equal to 1.0. Next, we find the first index at
which drops below a certain value . Let us denote this index
by . The synchronization index is calculated as ,
which is the estimated start of the auxiliary pulse reception. For
channel estimation the receiver needs to pick the consecutive
data samples starting from .

A. Synchronization Error

In this subsection, we consider the effect of synchronization
error on the proposed channel estimation method. Let us de-
note the synchronization error in samples by , which is ob-
tained by subtracting the true synchronization point from the
estimated one. Note these samples are based on the ADC rate
not the Nyquist rate. Based on the value of , we distinguish be-
tween the following four cases:
a) . In this case, channel estimation will produce an
estimate of the CIR in which the first element corresponds
to the first arrival.

b) . This coincides with an early synchro-
nization point estimate. The corresponding CIR estimate
is circularly shifted to the right (by ) relative to the true
CIR.

c) . This coincides with a late synchro-
nization point estimate. The data window is missing at
least part of the first arrival data. The only way to obtain
meaningful CIR estimate is to have an extra pulse at the
end of the sequence to make up for the missing compo-
nents. If this compensation is applied, the corresponding
CIR estimate is circularly shifted to the left (by ) rela-
tive to the true CIR.

d) channel estimation will not work in this
case.

In both the second and third case, the receiver can detect the
time of first arrival from the circularly shifted CIR and re-syn-
chronize. This should be a straightforward process given the de-
caying nature of the channel profile and will not be considered
in this paper. As will be proved by results, the occurrence of the
fourth case is a very rare event.

VIII. SIMULATIONS

A. Channel Estimation

In order to test the proposed channel estimation method using
equivalent-time sampling under different conditions, simula-
tions were performed. The UWB channel models described in
the IEEE 802.15.3a standard [6] were used. In all cases, the du-
ration of the UWB pulse was 1 nanosecond. The target sampling
rate was 4 GHz, which approximately coincides with the 10-dB
Nyquist rate for the pulses that were used [25]. The inter-pulse
interval was chosen to be the closest to 100 nanoseconds while
satisfying the co-prime condition. For the 4-GHz sampling rate
the inter-pulse interval is equivalent to 400 sampling periods.
This is reduced to to make it co-prime for all the
values of the sub-sampling factor, and 50, used

in the simulations. All simulation results were averaged over
simulation trials; each trial involved a different noise real-

ization and a different CIR realization. In all these trials perfect
synchronization was assumed.
Fig. 6(a) and (b) shows the variation of the MSE with when

the pulse is a first derivative of a Gaussian function. Fig. 6(a)
is obtained from simulation, while Fig. 6(b) is the approximate
MSE given in (32). It can be seen that the analytical formulae
provide a good approximation for the MSE. In spite of the de-
viations in some cases, the analytical formulae preserve the lo-
cation of the optimal with sufficient accuracy. The same phe-
nomenon is seen in Fig. 6(c) and (d), which are the counterparts
of Fig. 6(a) and (b) for a second derivative of a Gaussian pulse.
The effect of the SNR and drift is displayed in a more systematic
pattern in the case of the second-derivative Gaussian pulse than
in the case of the first-derivative pulse. In each individual figure,
the vertical dotted line marks the location of calculated using
(38). It can be seen that gives performance that is sufficiently
close to the optimal one. As drift or noise increases, the min-
imum of the MSE shifts to the right (away from ), but at the
same time, the MSE curves become flatter. This makes
a good choice for the BDU solution since it remains close to the
optimal value in most of the cases. It is evident from Fig. 6 that
is different for different pulse shapes, which stresses the im-

portance of (38) in choosing . All the following results were
obtained using for the second-derivative Gaussian pulse
shape. The results are also based only on the CM1 model since
no significant difference in performance was seen for the dif-
ferent (CM1, CM2, CM3 and CM4 [6]) models.
Fig. 7 depicts the MSE versus the SNR for zero drift and

sub-sampling factor and 50. The performance
of the BDU, LS, WLMMSE and LMMSE estimators is shown.
The case represents the Nyquist-sampling case. It can
be seen that for each individual estimator, the performance for
each sub-sampling factor is exactly equivalent to that obtained
at Nyquist rate. The individual curves for the different values
are actually indistinguishable. This emphasizes the ability of
the proposed scheme to perfectly reconstruct the CIR from
multiple sub-sampled observations. It can also be seen that the
LS, WLMMSE and LMMSE estimators greatly outperform
the BDU in the zero-drift case. This can be attributed to the
model mismatch the BDU approach suffers due to the invalid
assumption that . Subsequently, it will be shown that
when clock drift is present, the BDU estimator can outperform
the other three estimators.
Fig. 8 depicts the MSE versus the SNR for different sub-sam-

pling factors, and 50. The figure is plotted for
a rather high drift rate of p.p.m. (see [16], [17] for
practical range of drift rates). To analyze the performance of
the various estimators, we distinguish between to regimes: the
low SNR and the high SNR regimes. From the figure, it is clear
that the BDU estimator significantly outperforms the LS esti-
mator in the low SNR regime. Both the BDU and the LS esti-
mators do not use any statistical prior information. On the other
hand, theWLMMSE estimator exhibits better performance than
that of the BDU in the low SNR regime. However, The gap be-
tween the WLMMSE and the BDU estimators reduces as the
SNR increases. The LMMSE achieves the best permeance at
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Fig. 6. MSE versus : (a) first-derivative Gaussian pulse (simulation); (b) first-derivative Gaussian pulse (analytical); (c) second-derivative Gaussian pulse (sim-
ulation); (d) second-derivative Gaussian pulse (analytical).

Fig. 7. MSE versus SNR for the BDU approach compared with the LS,
WLMMSE and LMMSE approaches for zero clock drift and sub-sampling
factor and 50.

low SNRs, which is attributed to the use of more prior infor-
mation. As we move towards the high SNR regime, the perfor-
mance of all the four estimators converges. For the
and cases, it can be seen that the BDU performs better
than all the other estimators. This can be explained by that for
these (higher) sub-sampling rates, the total duration of the signal
increases as more pulse cycles are incorporated. Consequently,
the total drift (the drift rate multiplied by the total duration, see
(15)) increases. This affect the other estimators more than the
BDU estimator, which is more equipped to cope with such sce-
narios of data uncertainty.

In Fig. 9, is fixed to a value of 20, while is varied to
take the values 5, 10, 50 and 80 p.p.m. The low SNR perfor-
mance of the four estimators, relative to one another, is similar
to that in Fig. 8; performance is greatly determined by the SNR
in this regime. Again, the BDU estimator outperforms the other
estimators at high SNRs and high drift rates, as in the cases of
50-p.p.m. and 80-p.p.m. drift rates.
From both Figs. 8 and 9, it can be concluded that in the low

SNR regime, the performance of each of the four estimators is
determined largely be the SNR. The effect of clock drift be-
comes more visible in the high SNR regime. In the presence
of clock drift, the performance of each of the four estimators
shows some sort of bias phenomenon, that performance tends
to saturate towards high SNR. The BDU estimator shows some
superiority at high SNRs and it outperforms the other three es-
timators when significant clock drift is present. This is further
investigated in Fig. 10, which depicts performance against drift
rate for and the (high) SNR of 50 dB. It is evident from
the figure that the gap between the BDU estimator and the other
three estimators increases as the drift is increased by increasing
the drift rate, or by incorporating more pulse cycles as for high
values of .

B. Synchronization

To characterize the performance of the proposed synchro-
nization method, the same simulation parameters described in
the previous subsection were used. However, in these tests, a
whole data frame was generated that contained the synchroniza-
tion/channel estimation pulse sequence, as well as random data.
The frame format depicted in Fig. 5 was used. The data was
modulated using PPMwith 4 symbols and data rate that was 1.5
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Fig. 8. MSE versus SNR for the BDU approach compared with the LS, WLMMSE and LMMSE approaches for a drift rate p.p.m. and sub-sampling
factor equal to (a) 5, (b) 10, (c) 20 and (d) 50.

times as high as the synchronization/channel estimation pulse
rate. For simplicity, only 10 symbols were transmitted per frame
and the simulation was confined to one frame proceeded by the
gap and the data of another frame (as in Fig. 5). Hence, we had
only one synchronization sequence in the setup. The search was
carried out over all the simulated samples and was not confined
only to samples, as recommended in Section VII. The gap
interval was set equal to the duration of pulse cycles.
Fig. 11(a) (top) shows an example of the parameter cal-

culated for all the simulated data windows. The bottom figure
is the corresponding received signal. Fig. 11(b) is a zoom-in
of Fig. 11(a) taken around the peak of . It can be seen that
exhibits a somewhat flat peak. This is explained as follows.

Many of the data windows that start sufficiently close to the
synchronization point and before it contain most of the energy
of the pulse sequence (again because the profile is decaying).
One would still expect this approximately flat peak to be in-
creasing towards the right. However, due to the effect of noise
the maximum (max) can occur any where on the flat peak and
not necessarily on the far right. The significant drop in after
the synchronization point is very clear. In our simulations, we
used to detect the transition at and hence find the
synchronization point .
Fig. 12(a) and (b) plots the performance of the proposed syn-

chronization method, which was derived from simulation
trials. In Fig. 12(a), the mean absolute error (MAE), given in
samples of the ADC frequency, is plotted against SNR for three
different values and drift rates equal to 0 and 20 p.p.m. Note
that the sampling periods are larger for larger values of . The
performance could have been presented in terms of Nyquist
samples. However, it is found more convenient to present the
results in terms of the ADC samples since that is the level of

synchronization required in each case. In Fig. 12(a), the MAE
is below 5 samples in most of the cases. Since the MAE can
be dominated by outlier effect, a good performance indicator is
to look at the percentage of cases in which the absolute value
of the synchronization error is equal to or less than a cer-
tain value. This is plotted in Fig. 12(b). It is shown that the per-
centage of cases in which perfect synchronization is achieved
% is approximately greater than or equal to 60%. The
percent of cases in which sample is always more that
80%. The percentage goes above 90% and approaches 100%
for . This indicates a very good synchronization per-
formance and the we can wither obtain the CIR estimate or its
circularly shifted version, as explained in Section VII. Note that
clock drift effect is more notable in the MAE and is almost un-
observable when the distribution of the error is considered. This
indicates an outlier effect when clock drift is present.
The plot of in Fig. 11 suggests that the synchronization

process can be implemented in a more computationally effi-
cient manner by using a two-stage procedure. In the first stage, a
coarse search is performed by sliding the test window by a rela-
tively large step instead of the proposed single-sample step. The
step can be chosen such that at least one point is picked from the
flat peak of as shown in Fig. 11. This will guarantee that the
maximum of the coarse is one of the flat peak points. After
finding the maximum of the coarse , a fine search around the
maximum can be carried out using a step of one sample. Using
this fine search, the synchronization point can be located in the
same way discussed in Section VII.

IX. CONCLUSION

The problem of UWB channel estimation using sub-sampled
observations was considered. A sub-sampling scheme using
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Fig. 9. MSE versus SNR for the BDU approach compared with the LS, WLMMSE and LMMSE approaches for a sub-sampling factor and a drift rate
equal to (a) 5, (b) 10, (c) 50 and (d) 80 p.p.m.

Fig. 10. MSE versus drift rate for the BDU approach compared with the
LS, WLMMSE and LMMSE approaches for dB and sub-sampling
factor and 20.

multiple observations was proposed. The proposed scheme
requires identical observations, and that the length of the
observation window (in units of sampling periods) and the
sub-sampling factor be co-prime. The effect of timing uncer-
tainty due to clock drift was analyzed. An estimator based on
the bounded data uncertainty (BDU) model was proposed to
provide good channel estimation performance under different
noise and clock drift conditions, without using statistical prior
knowledge. When clock drift is present, the proposed estimator
sufficiently outperforms the least squares (LS), the linear
minimum mean squared error (LMMSE) and the white linear
minimum mean squared error (WLMMSE) estimators in the
high SNR case. At low SNRs, the proposed estimator performs
remarkably better than the LS estimator that uses the same

amount of information. In addition to channel estimation, the
synchronization problem was also addressed. It was shown that
the receiver can detect the first arrival of the transmitted pulse
sequence with good accuracy. The effect of synchronization
errors on channel estimation was also discussed.
The BDU approach proved to be capable of handling model

errors due to clock drift. The same approach could be applied
when the mismatch is due to pulse frequency distortion. Char-
acterizing the performance of the BDU approach in such sce-
narios, and extending the approach if needed, constitute an in-
teresting future work for the authors.

APPENDIX A
DERIVATION OF THE MSE

Starting from (30), we have four terms inside the trace. First
let us look at the first term. Based on (22), this term can be
written as

(A.1)

Using (16), the expectation can be expanded as

(A.2)
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Fig. 11. An example plot of for and 30-dB SNR: (a) full data, (b)
a zoom-in around the peak.

The second term of the MSE is

(A.3)

where it is assumed that . Similarly,

(A.4)

Fig. 12. Performance of the proposed synchronization method: (a) The mean
absolute error (MAE) in samples; (b) Percentage of cases with absolute syn-
chronization error less than or equal to selected values in samples.

Now, substituting (A.1)–(A.4) in (30), we obtain the expression
for the exact MSE as

(A.5)

To obtain a simpler expression, we replace the CIR covari-
ance by its white equivalent, - - . This, after manip-
ulation, results in the white MSE

(A.6)

Further to the previous whiteness approximation, let us intro-
duce the following replacements:

- -

- - (A.7)
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where is obtained from

(A.8)

Note that (A.8) implies that is approximated by a cir-
culant matrix. The error matrix is the difference of the true
transmission matrix and the matrix . The matrix is
obtained by decimating a matrix , which has a structure that
is approximately similar to that of (this is especially valid
for small to moderate drift rate). As a result, the structure of

is approximately similar to that of
, including the circulant property, which justifies (A.7)

and (A.8).
Now, by substituting (A.7) together with (28) in (A.6) and

manipulating based on the trace and FFT matrix properties, we
obtain the approximate MSE

(A.9)

Manipulating further yields (32).
Now, we revert to (34), which is derived from (27) by taking

the expectation and the trace, i.e.,

(A.10)

where is substituted from (A.2) for the exact MSE.
For the white MSE, we have

(A.11)
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